Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mycorrhiza ; 32(5-6): 397-407, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36087125

RESUMEN

Sustainable agriculture is essential to address global challenges such as climate change and biodiversity loss. Hedgerows enhance aboveground biodiversity and provide ecosystem services, but little is known about their impact on soil biota. Arbuscular mycorrhizal (AM) fungi are one of the key components of belowground biodiversity. We compared the diversity and composition of AM fungal communities at four farmland sites located in Central Spain, where 132 soil samples in total were collected to assess soil physical and chemical properties and the AM fungal communities. We compared the richness (number of AM fungal taxa), taxonomic, functional, and phylogenetic diversity, and structure of the AM fungal communities across three farmland habitat types, namely hedgerows, woody crops (olive groves and vineyard), and herbaceous crops (barley, sunflower, and wheat). Our results showed positive effects of hedgerows on most diversity metrics. Almost 60% of the AM fungal taxa were shared among the three farmland habitat types. Hedgerows increased AM fungal taxonomic richness (31%) and alpha diversity (25%), and especially so compared to herbaceous crops (45% and 28%, respectively). Hedgerows harbored elevated proportions of AM fungi with non-ruderal life-history strategies. AM fungal communities were more similar between hedgerows and woody crops than between hedgerows and adjacent herbaceous crops, possibly because of differences in tillage and fertilization. Unexpectedly, hedgerows reduced phylogenetic diversity, which might be related to more selective associations of AM fungi with woody plants than with herbaceous crops. Overall, the results suggest that planting hedgerows contributes to maintain belowground diversity. Thus, European farmers should plant more hedgerows to attain the goals of the EU Biodiversity Strategy for 2030.


Asunto(s)
Micorrizas , Agricultura/métodos , Biodiversidad , Productos Agrícolas/microbiología , Ecosistema , Hongos , Filogenia , Suelo/química , Microbiología del Suelo
2.
PLoS One ; 15(5): e0233878, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32470094

RESUMEN

The present study aimed to investigate the effects of arbuscular mycorrhizal (AM) fungal communities originating from organic and conventional agriculture on wheat growth and yield. Six different spring wheat cultivars released in different years in north and central European countries were considered. We hypothesised that AM fungal inoculum collected from organic agricultural fields would elicit a greater positive growth response than inoculum collected from conventional agricultural fields; and that older cultivars, which were developed under conditions of low fertilizer input, would exhibit overall greater growth responses to the presence of AM fungi, compared with more recent cultivars, and that AM fungal inoculum from conventional fields might have the most beneficial effect on the growth and yield of recent cultivars. The results showed that the overall effects on the growth and yield of spring wheat grown with organic and conventional AM fungal inocula did not differ greatly. However, the inoculation growth response, showing the difference of the effects of organic and conventional inocula, varied between particular wheat cultivars. Inoculation growth response of the cultivar Pikker (released in 1959) was the most positive, while that of the cultivar Arabella (released in 2012) was the most negative. The use of AM fungal inoculum from organic fields resulted in slightly taller plant individuals. Pikker showed relatively higher yield and stronger growth when the organic AM fungal inoculum was used. Arabella exhibited relatively lower yield and weaker growth when the organic inoculum was used. Whether the positive response of Pikker to Estonian organic inoculation reflects adaptation to the locally occurring AM fungal community needs to be established by further studies of the communities of AM fungi colonizing wheat roots.


Asunto(s)
Granjas , Micorrizas/fisiología , Agricultura Orgánica , Triticum/crecimiento & desarrollo , Triticum/microbiología , Raíces de Plantas/fisiología , Brotes de la Planta/fisiología , Suelo , Microbiología del Suelo , Triticum/anatomía & histología
3.
New Phytol ; 226(4): 1117-1128, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31943225

RESUMEN

The benefits of the arbuscular mycorrhizal (AM) symbiosis between plants and fungi are modulated by the functional characteristics of both partners. However, it is unknown to what extent functionally distinct groups of plants naturally associate with different AM fungi. We reanalysed 14 high-throughput sequencing data sets describing AM fungal communities associating with plant individuals (2427) belonging to 297 species. We examined how root-associating AM fungal communities varied between plants with different growth forms, photosynthetic pathways, CSR (competitor, stress-tolerator, ruderal) strategies, mycorrhizal statuses and N-fixing statuses. AM fungal community composition differed in relation to all studied plant functional groups. Grasses, C4 and nonruderal plants were characterised by high AM fungal alpha diversity, while C4 , ruderal and obligately mycorrhizal plants were characterised by high beta diversity. The phylogenetic diversity of AM fungi, a potential surrogate for functional diversity, was higher among forbs than other plant growth forms. Putatively ruderal (previously cultured) AM fungi were disproportionately associated with forbs and ruderal plants. There was phylogenetic correlation among AM fungi in the degree of association with different plant growth forms and photosynthetic pathways. Associated AM fungal communities constitute an important component of plant ecological strategies. Functionally different plants associate with distinct AM fungal communities, linking mycorrhizal associations with functional diversity in ecosystems.


Asunto(s)
Micobioma , Micorrizas , Ecosistema , Filogenia , Raíces de Plantas , Plantas , Microbiología del Suelo , Simbiosis
4.
Glob Chang Biol ; 24(6): 2649-2659, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29573508

RESUMEN

The arbuscular mycorrhizal (AM) symbiosis is a key plant-microbe interaction in sustainable functioning ecosystems. Increasing anthropogenic disturbance poses a threat to AM fungal communities worldwide, but there is little empirical evidence about its potential negative consequences. In this global study, we sequenced AM fungal DNA in soil samples collected from pairs of natural (undisturbed) and anthropogenic (disturbed) plots in two ecosystem types (10 naturally wooded and six naturally unwooded ecosystems). We found that ecosystem type had stronger directional effects than anthropogenic disturbance on AM fungal alpha and beta diversity. However, disturbance increased alpha and beta diversity at sites where natural diversity was low and decreased diversity at sites where natural diversity was high. Cultured AM fungal taxa were more prevalent in anthropogenic than natural plots, probably due to their efficient colonization strategies and ability to recover from disturbance. We conclude that anthropogenic disturbance does not have a consistent directional effect on AM fungal diversity; rather, disturbance equalizes levels of diversity at large scales and causes changes in community functional structure.


Asunto(s)
Ecosistema , Micobioma , Micorrizas/fisiología , Microbiología del Suelo , ADN de Hongos/análisis , Micorrizas/clasificación , Micorrizas/genética , Análisis de Secuencia de ADN
5.
FEMS Microbiol Ecol ; 92(7)2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27162183

RESUMEN

Although mycorrhizas are expected to play a key role in community assembly during ecological succession, little is known about the dynamics of the symbiotic partners in natural systems. For instance, it is unclear how efficiently plants and arbuscular mycorrhizal (AM) fungi disperse into early successional ecosystems, and which, if either, symbiotic partner drives successional dynamics. This study describes the dynamics of plant and AM fungal communities, assesses correlation in the composition of plant and AM fungal communities and compares dispersal limitation of plants and AM fungi during succession. We studied gravel pits 20 and 50 years post abandonment and undisturbed grasslands in Western Estonia. The composition of plant and AM fungal communities was strongly correlated, and the strength of the correlation remained unchanged as succession progressed, indicating a stable dependence among mycorrhizal plants and AM fungi. A relatively high proportion of the AM fungal taxon pool was present in early successional sites, in comparison with the respective fraction of plants. These results suggest that AM fungi arrived faster than plants and may thus drive vegetation dynamics along secondary vegetation succession.


Asunto(s)
Hongos/fisiología , Micorrizas/fisiología , Plantas/microbiología , Ecosistema , Estonia , Hongos/genética , Hongos/aislamiento & purificación , Micorrizas/genética , Micorrizas/aislamiento & purificación , Simbiosis
6.
Sci Total Environ ; 530-531: 103-109, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26026414

RESUMEN

Pollen allergies are the most common form of respiratory allergic disease in Europe. Most studies have emphasized the role of environmental processes, as the drivers of airborne pollen fluctuations, implicitly considering pollen production as a random walk. This work shows that internal self-regulating processes of the plants (negative feedback) should be included in pollen dynamic systems in order to give a better explanation of the observed pollen temporal patterns. This article proposes a novel methodological approach based on dynamic systems to investigate the interaction between feedback structure of plant populations and climate in shaping long-term airborne Poaceae pollen fluctuations and to quantify the effects of climate change on future airborne pollen concentrations. Long-term historical airborne Poaceae pollen data (30 years) from Cordoba city (Southern Spain) were analyzed. A set of models, combining feedback structure, temperature and actual evapotranspiration effects on airborne Poaceae pollen were built and compared, using a model selection approach. Our results highlight the importance of first-order negative feedback and mean annual maximum temperature in driving airborne Poaceae pollen dynamics. The best model was used to predict the effects of climate change under two standardized scenarios representing contrasting temporal patterns of economic development and CO2 emissions. Our results predict an increase in pollen levels in southern Spain by 2070 ranging from 28.5% to 44.3%. The findings from this study provide a greater understanding of airborne pollen dynamics and how climate change might impact the future evolution of airborne Poaceae pollen concentrations and thus the future evolution of related pollen allergies.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Alérgenos/análisis , Cambio Climático , Clima , Monitoreo del Ambiente , Polen , Contaminación del Aire/análisis , Ciudades , Modelos Teóricos , España
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...